

10.1 Graphs and Graph Models

Simple Graph

□ A *simple graph* consists of

- a nonempty set of *vertices* called V
- a set of <u>edges</u> (unordered pairs of distinct elements of V) called E
- Notation: G = (V,E)

Lecture 8

- This simple graph represents a network.
- The network is made up of computers and telephone links between computers

Multigraph

A <u>multigraph</u> can have <u>multiple edges</u> (two or more edges connecting the same pair of vertices).

• There can be multiple telephone lines between two computers in the network.

Pseudograph

A Pseudograph can have multiple edges and loops (an edge connecting a vertex to itself).

Directed Graph

The edges are ordered pairs of (not necessarily distinct) vertices.

Some telephone lines in the network may operate in only one direction. Those that operate in two directions are represented by pairs of edges in opposite directions.

Lecture 8

Types of Directed Graphs

Туре	Edges	Loops	Multiple Edges	
Simple Graph	Undirected	NO	NO	
Multigraph	Undirected	NO	YES	
Pseudograph	Undirected YES		YES	
Simple Directed Graph	Directed	NO	NO	
Directed multigraph	Directed	YES	YES	
Mixed graph	Directed and undirected	YES	YES	

Dr. *Mohamed Abdel-Aal* Discrete Mathematics

Lecture 8

□ 10.2 Graph Terminology and Special Types of Graphs

Basic Terminology

Adjacent Vertices in Undirected Graphs

- Two vertices, u and v in an undirected graph G are called *adjacent* (or neighbors) in G, if {u,v} is an edge of G.
- An edge *e* connecting *u* and *v* is called *incident* with vertices *u* and *v*, or is said to <u>connect</u> *u* and *v*.
- The vertices u and v are called *endpoints* of edge $\{u,v\}$.

Degree of a Vertex

Lecture 8

Dr. *Mohamed Abdel-Aal* Discrete Mathematics

- The *degree of a vertex* in an undirected graph is the number of edges incident with it
 - except that a loop at a vertex contributes twice to the degree of that vertex

U

1)

The degree of a vertex v is denoted by deg(v).

Find the degrees of all the vertices:

deg(a) = 2, deg(b) = 6, deg(c) = 4, deg(d) = 1,deg(e) = 0, deg(f) = 3, deg(g) = 4

Lecture 8

Dr. Mohamed Abdel-Aal Discrete Mathematics *Solution:* In *G*, $\deg(a) = 2$, $\deg(b) = \deg(c) = \deg(f) = 4$, $\deg(d) = 1$, $\deg(e) = 3$, and $\deg(g) = 0$. The neighborhoods of these vertices are $N(a) = \{b, f\}$, $N(b) = \{a, c, e, f\}$, $N(c) = \{b, d, e, f\}$, $N(d) = \{c\}$, $N(e) = \{b, c, f\}$, $N(f) = \{a, b, c, e\}$, and $N(g) = \emptyset$. In *H*, $\deg(a) = 4$, $\deg(b) = \deg(e) = 6$, $\deg(c) = 1$, and $\deg(d) = 5$. The neighborhoods of these vertices are $N(a) = \{b, d, e\}$, $N(b) = \{a, b, c, d, e\}$, $N(c) = \{b\}$, $N(d) = \{a, b, e\}$, and $N(e) = \{a, b, d\}$.

THEOREM 1 THE HANDSHAKING THEOREM Let G = (V, E) be an undirected graph with *m* edges. Then

$$2m = \sum_{v \in V} \deg(v).$$

(Note that this applies even if multiple edges and loops are present.)

Example

How many edges are there in a graph with 10 vertices each of degree six?

Lecture 8

Solution: Because the sum of the degrees of the vertices is $6 \cdot 10 = 60$, it follows that 2m = 60 where m is the number of edges. Therefore, m = 30.

• When (*u*,*v*) is an edge of a directed graph *G*, *u* is said to be *adjacent to v* and *v* is said to be *adjacent from u*.

- v as their <u>terminal</u> vertex
- Denoted by $deg^{-}(v)$

- *Out-degree* of a vertex *v*
 - The number of vertices *adjacent from v* (the number of edges with *v* as their <u>initial</u> vertex)
 - Denoted by $deg^+(v)$

A loop at a vertex contributes 1 to both the in-degree and out-degree.

Examples Find the in-degrees and out-degrees of this digraph.

In-degrees: deg⁻(a) = 2, deg⁻(b) = 2, deg⁻(c) = 3, deg⁻ (d) = 2, deg⁻(e) = 3, deg⁻(f) = 0 Out-degrees: deg⁺(a) = 4, deg⁺(b) = 1, deg⁺(c) = 2, $deg^{+}(d) = 2, deg^{+}(e) = 3, deg^{+}(f) = 0$

Dr. Mohamed Abdel-Aal Discrete Mathematics

Lecture 8

3. Wheel

When a new vertex is added to a cycle C_n and this new vertex is connected to each of the *n* vertices in C_n , we obtain a *wheel* W_n .

Lecture 8

A *subgraph* of a graph G = (V,E) is a graph H = (W,F) where $W \subseteq V$ and $F \subseteq E$.

Is C_5 a subgraph of K_5 ?

 K_5

4. Bipartite Graphs

A simple graph G is called *bipartite* if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2). When this condition holds, we call the pair (V_1, V_2) a *bipartition* of the vertex set V of G.

 C_6 is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets $V_1 = \{v_1, v_3, v_5\}$ and $V_2 = \{v_2, v_4, v_6\}$, and every edge of C_6 connects a vertex in V_1 and a vertex in V_2 .

Dr. *Mohamed Abdel-Aal* Discrete Mathematics

Lecture 8

5. Complete Bipartite Graphs

A complete bipartite graph Km,n :is a graph that has its vertex set partitioned into two subsets of m and n vertices, respectively with an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.

5. Union

The *union* of 2 simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$. The union is denoted by $G_1 \cup G_2$.

10.3 Representing Graphs and Graph Isomorphism Representing Graphs 1. Adjacency Matrix A simple graph G = (V,E) with *n* vertices can be represented by its *adjacency matrix*, A, where the entry a_{ij} in row *i* and column *j* is: $a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge in } G \\ 0 & \text{otherwise} \end{cases}$ Example From a b c d e f 0 1 0 0 1 1 **Lecture 8** а db b 1 0 1 0 0 1 То 0 1 0 1 0 1 ea d001011e100101f111110 $\{v_1, v_2\}$ W_5 Dr. Mohamed Abdel-Aal column row **Discrete Mathematics**

• Use an adjacency matrix to represent the graph

The adjacency matrix using the ordering of vertices a, b, c, d is

0	3	0	2
3	0	1	1
0	1	1	2
$\begin{bmatrix} 0\\ 3\\ 0\\ 2 \end{bmatrix}$	1	2	$\begin{bmatrix} 2\\1\\2\\0 \end{bmatrix}$

2. Incidence Matrix

Example

Let G = (V,E) be an undirected graph. Suppose $v_1, v_2, v_3, ..., v_n$ are the vertices and $e_1, e_2, e_3, ..., e_m$ are the edges of G. The *incidence matrix* w.r.t. this ordering of V and E is the $n \times m$ matrix $M = [m_{ij}]$, where

$$n_{ij} = \begin{cases} 1 & \text{if edge } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise} \end{cases}$$

Represent the graph shown with an incidence matrix.

Represent the following graph with an incidence matrix.

The incidence matrix is

	e_1						
	$\begin{bmatrix} 1\\0\\0\\1\\0 \end{bmatrix}$						
v4 v5	1 0	0 1	1 0	0 1	0 1	0 0	

The incidence matrix for this graph is

		e_2							
<i>v</i> 1	1	1	1	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	
<i>v</i> ₂	0	1	1	1	0	1	1	0	
<i>v</i> ₃	0	0	0	1	1	0	0	0	
<i>v</i> ₄	0	0	0	0	0	0	1	1	
<i>v</i> 5	0	0	0	0	1	1	0	0	

Dr. *Mohamed Abdel-Aal* Discrete Mathematics

Lecture 8

Isomorphism

Two simple graphs are isomorphic if:

- there is a one-to one correspondence between the vertices of the two graphs
- the adjacency relationship is preserved

DEFINITION

The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are *isomorphic* if there is a one-to-one and onto function *f* from V_1 to V_2 with the property that *a* and *b* are adjacent in G_1 iff f(a) and f(b) are adjacent in G_2 , for all *a* and *b* in V_1 .

Example

□ 10.4 Connectivity

Paths in Undirected Graphs

- There is a <u>path</u> from vertex v₀ to vertex v_n if there is a sequence of edges from v₀ to v_n
 - This path is labeled as $v_0, v_1, v_2, \dots, v_n$ and has a length of *n*.
- The path is a *circuit* if the path begins and ends with the same vertex.
- A <u>path is *simple*</u> if it does not contain the same edge more than once.

Lecture 8

A path or circuit is said to <u>pass</u> through the vertices v₀, v₁, v₂, ..., v_n or *traverse* the edges e₁, e₂, ..., e_n.

 u_1, u_4, u_2, u_3

Is it simple?

yes What is the length? *3*

Does it have any circuits?

no

 $u_1, u_5, u_4, u_1, u_2, u_3$

Is it simple? *yes* What is the length? 5 Does it have any circuits? Yes; u_1, u_5, u_4, u_1

*u*₁, *u*₂, *u*₅, *u*₄, *u*₃ Is it simple? *yes* What is the length? *4* Does it have any circuits? *no*

EXAMPLE 1 In the simple graph shown in Figure 1, a, d, c, f, e is a simple path of length 4, because $\{a, d\}$, $\{d, c\}, \{c, f\}, and \{f, e\}$ are all edges. However, d, e, c, a is not a path, because $\{e, c\}$ is not an edge. Note that b, c, f, e, b is a circuit of length 4 because $\{b, c\}, \{c, f\}, \{f, e\}, and \{e, b\}$ are edges, and this path begins and ends at b. The path a, b, e, d, a, b, which is of length 5, is not simple because it contains the edge $\{a, b\}$ twice.

Lecture 8

Connectedness

Examples

- An **<u>undirected</u>** graph is called **connected** if there is a <u>path</u> between every pair of distinct vertices of the graph.
- There is a simple path between every pair of distinct vertices of a connected undirected graph.

Are the following graphs connected?

A graph that is not connected is the union of two or more disjoint connected subgraphs (called the connected components of the graph).

Lecture 8

What are the connected components of the following graph?

$\{a, b, c\}, \{d, e\}, \{f, g, h\}$

Cut edges and vertices

If one can remove a vertex (and all incident edges) and produce a graph with more connected components, the vertex is called a <u>cut</u> <u>vertex</u>.

If removal of an edge creates more connected components the edge is called a <u>cut edge</u> or <u>bridge</u>.

Lecture 8

Find the cut vertices and cut edges in the following graph.

Lecture 8

The cut vertices of G1 are b, c, and e. The removal of one of these vertices (and its adjacent edges) disconnects the graph. The cut edges are $\{a, b\}$ and $\{c, e\}$. Removing either one of these edges disconnects G1

Connectedness in Directed Graphs

- A directed graph is <u>strongly connected</u> if there is a <u>directed</u> path between <u>every</u> pair of vertices a&b. (from a to b) (from b to a).
- A directed graph is <u>weakly connected</u> if there is a path between every pair of vertices in the <u>underlying undirected</u> graph, (i.e when the directions are disregarded).

Example

Lecture 8

Dr. *Mohamed Abdel-Aal* Discrete Mathematics

Is the following graph strongly connected? Is it weakly connected?

This graph is strongly connected. Why? Because there is a directed path between every pair of vertices.

If a directed graph is strongly connected, then it must also be weakly connected.

Is the following graph strongly connected? Is it weakly connected?

This graph is not strongly connected. Why not? Because there is <u>no directed path between *a* and *b*, *a* and *e*, etc. However, it *is* weakly connected. (Imagine this graph as an undirected graph.)</u>

Counting Paths Between Vertices

Lecture 8

THEOREM 2

Let G be a graph with adjacency matrix A with respect to the ordering $v_1, v_2, ..., v_n$ of the vertices of the graph (with directed or undirected edges, with multiple edges and loops allowed). The number of different paths of length r from v_i to v_j , where r is a positive integer, equals the (i, j)th entry of \mathbf{A}^r .

How many paths of length four are there from **a** to **d** in the simple graph **G** ?

Solution:

the number of paths of length four from a to d is the (1, 4)th entry of A^4 .

$$\mathbf{A}^{4} = \begin{bmatrix} 8 & 0 & 0 & \frac{8}{0} \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix},$$

Lecture 8

there are exactly eight paths of length four from a to d. By inspection of the graph, we see that $\underline{a, b, a, b, d}$; $\underline{a, b, a, c, d}$; $\underline{a, b, d, b, d}$; $\underline{a, b, d, c, d}$; $\underline{a, c, a, b, d}$; $\underline{a, c, a, c, d}$; $\underline{a, c, d, b, d}$; and $\underline{a, c, d, c, d}$ are the eight paths from a to d.

