CH. 10 Graphs

10.1 Graphs and Graph Models
10.2 Graph Terminology and Special Types of Graphs
10.3 Representing Graphs and Graph Isomorphism

- 10.4 Connectivity
10.1 Graphs and Graph Models

Simple Graph

\square A simple graph consists of

- a nonempty set of vertices called V
- a set of edges (unordered pairs of distinct elements of V) called E
- Notation: $G=(V, E)$

- This simple graph represents a network.
- The network is made up of computers and telephone links between computers

Multigraph

A multigraph can have multiple edges (two or more edges connecting the same pair of vertices).

- There can be multiple telephone lines between two computers in the network.

Pseudograph

A Pseudograph can have multiple edges and loops (an edge connecting a vertex to itself).

Directed Graph

The edges are ordered pairs of (not necessarily distinct) vertices.

Some telephone lines in the network may operate in only one direction.
Those that operate in two directions are represented by pairs of edges in opposite directions.

Types of Directed Graphs

Directed
Multigraphs

Summary

Type	Edges	Loops	Multiple Edges
Simple Graph	Undirected	NO	NO
Multigraph	Undirected	NO	YES
Pseudograph	Undirected	YES	YES
Simple Directed Graph	Directed	NO	NO
Directed multigraph	Directed	YES	YES
Mixed graph	Directed and undirected	YES	YES

10.2 Graph Terminology and Special Types of Graphs

Basic Terminology

\square Adjacent Vertices in Undirected Graphs

- Two vertices, u and v in an undirected graph G are called adjacent (or neighbors) in G, if $\{u, v\}$ is an edge of G.
- An edge e connecting u and v is called incident with vertices u and v, or is said to connect u and v.
- The vertices u and v are called endpoints of edge $\{u, v\}$.

D Degree of a Vertex

- The degree of a vertex in an undirected graph is the number of edges incident with it
- except that a loop at a vertex contributes twice to the degree of that vertex
- The degree of a vertex v is denoted by $\operatorname{deg}(v)$.

Examples

Find the degrees of all the vertices:

$$
\begin{aligned}
& \operatorname{deg}(a)=2, \operatorname{deg}(b)=6, \operatorname{deg}(c)=4, \operatorname{deg}(d)=1 \\
& \operatorname{deg}(e)=0, \operatorname{deg}(f)=3, \operatorname{deg}(g)=4
\end{aligned}
$$

Lecture 8

Dr. Mohamed $\mathcal{A} 6 d e l-\mathcal{A} a l$ Discrete Mathematics

G

H

Solution: In $G, \operatorname{deg}(a)=2, \operatorname{deg}(b)=\operatorname{deg}(c)=\operatorname{deg}(f)=4, \operatorname{deg}(d)=1, \operatorname{deg}(e)=3$, and $\operatorname{deg}(g)=0$. The neighborhoods of these vertices are $N(a)=\{b, f\}, N(b)=\{a, c, e, f\}$, $N(c)=\{b, d, e, f\}, N(d)=\{c\}, N(e)=\{b, c, f\}, N(f)=\{a, b, c, e\}$, and $N(g)=\emptyset$. In $H, \operatorname{deg}(a)=4, \operatorname{deg}(b)=\operatorname{deg}(e)=6, \operatorname{deg}(c)=1$, and $\operatorname{deg}(d)=5$. The neighborhoods of these vertices are $N(a)=\{b, d, e\}, N(b)=\{a, b, c, d, e\}, N(c)=\{b\}, N(d)=\{a, b, e\}$, and $N(e)=\{a, b, d\}$.

THEOREM 1 THE HANDSHAKING THEOREM Let $G=(V, E)$ be an undirected graph with m edges. Then

$$
2 m=\sum_{v \in V} \operatorname{deg}(v) .
$$

(Note that this applies even if multiple edges and loops are present.)

Example

How many edges are there in a graph with 10 vertices each of degree six?
\square Adjacent Vertices in Directed Graphs

- When (u, v) is an edge of a directed graph G, u is said to be adjacent to v and v is said to be adjacent from u.

initial vertex terminal vertex

In-degree of a vertex v

- The number of vertices adjacent to v (the number of edges with v as their terminal vertex
- Denoted by $\operatorname{deg}^{-}(v)$
- Out-degree of a vertex v
- The number of vertices adjacent from v (the number of edges with v as their initial vertex)
- Denoted by $\operatorname{deg}^{+}(v)$
- A loop at a vertex contributes 1 to both the in-degree and out-degree.

Examples

Find the in-degrees and out-degrees of this digraph.
In-degrees: $\operatorname{deg}^{-}(a)=2, \operatorname{deg}^{-}(b)=2, \operatorname{deg}^{-}(c)=3, \operatorname{deg}^{-}$ $(\mathrm{d})=2, \operatorname{deg}^{-}(\mathrm{e})=3, \operatorname{deg}^{-}(\mathrm{f})=0$
Out-degrees: $\operatorname{deg}^{+}(\mathrm{a})=4, \operatorname{deg}^{+}(\mathrm{b})=1, \operatorname{deg}^{+}(\mathrm{c})=2$,
 $\operatorname{deg}^{+}(\mathrm{d})=2, \operatorname{deg}^{+}(\mathrm{e})=3, \operatorname{deg}^{+}(\mathrm{f})=0$

THEOREM 3 Let $G=(V, E)$ be a graph with directed edges. Then

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E| .
$$

The sum of the in-degrees of all vertices in a digraph $=$

$$
=\text { the sum of the out-degrees }
$$

$$
=\text { the number of edges }
$$

Some Special Simple Graphs

1. Complete Graph

- The complete graph on n vertices $\left(K_{n}\right)$ is the simple graph that contains exactly one edge between each pair of distinct vertices.

The figures above represent the complete graphs, K_{n}, for $n=1,2,3,4,5$, and 6 .

2. Cycle

The cycle $\boldsymbol{C}_{n}(n \geq 3)$, consists of n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\}$, and $\left\{v_{n}, v_{1}\right\}$.

3. Wheel

When a new vertex is added to a cycle C_{n} and this new vertex is connected to each of the n vertices in C_{n}, we obtain a wheel W_{n}.

W_{3}

W_{5}

4. Subgraph

A subgraph of a graph $G=(V, E)$ is a graph $H=(W, F)$ where $W \subseteq V$ and $F \subseteq E$.

Is C_{5} a subgraph of K_{5} ?

K_{5}

C_{5}

4. Bipartite Graphs

A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets V_{1} and V_{2} such that every edge in the graph connects a vertex in V_{1} and a vertex in V_{2} (so that no edge in G connects either two vertices in V_{1} or two vertices in V_{2}). When this condition holds, we call the pair $\left(V_{1}, V_{2}\right)$ a bipartition of the vertex set V of G.

C_{6} is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets $V_{1}=\left\{v_{1}, v_{3}, v_{5}\right\}$ and $V_{2}=\left\{v_{2}, v_{4}, v_{6}\right\}$, and every edge of C_{6} connects a vertex in V_{1} and a vertex in V_{2}.

5. Complete Bipartite Graphs

A complete bipartite graph $K m, n$:is a graph that has its vertex set partitioned into two subsets of m and n vertices, respectively with an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.

5. Union

The union of 2 simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$. The union is denoted by $G_{1} \cup G_{2}$.

Dr. Mohamed \mathfrak{A} bdel-Aal
Discrete Mathematics
10.3 Representing Graphs and Graph Isomorphism

Representing Graphs

1. Adjacency Matrix

A simple graph $G=(V, E)$ with n vertices can be represented by its adjacency matrix, A, where the entry $a_{i j}$ in row i and column j is:

$$
a_{i j}= \begin{cases}1 & \text { if }\left\{v_{i}, v_{j}\right\} \text { is an edge in } G \\ 0 & \text { otherwise }\end{cases}
$$

Example

Dr. Mohamed $\mathfrak{A} 6 d e l-\mathcal{A} a l$ Discrete Mathematics

W_{5}

Example

- Use an adjacency matrix to represent the graph

Lecture 8

- Use an adjacency matrix to represent the pseudograph

The adjacency matrix using the ordering of vertices a, b, c, d is
$\left[\begin{array}{llll}0 & 3 & 0 & 2 \\ 3 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 2 & 0\end{array}\right]$

2. Incidence Matrix

Let $G=(V, E)$ be an undirected graph. Suppose $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are the vertices and $e_{1}, e_{2}, e_{3}, \ldots, e_{m}$ are the edges of G. The incidence matrix w.r.t. this ordering of V and E is the $n \times m$ matrix $M=\left[m_{i j}\right]$, where

$$
m_{i j}=\left\{\begin{array}{lc}
1 & \text { if edge } e_{j} \text { is incident with } v_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

Example

Represent the graph shown with an incidence matrix.

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}
v_{1}	1	1	0	0	0	0
v_{2}	0	0	1	1	0	1
v_{3}	0	0	0	0	1	1
v_{4}	1	0	1	0	0	0
v_{5}	0	1	0	1	1	0

Example

Represent the following graph with an incidence matrix.

The incidence matrix is
$\left.\begin{array}{c} \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5}\end{array} \begin{array}{cccccc}e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} \\ v_{5} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0\end{array}\right]$.

The incidence matrix for this graph is

v_{1}
v_{2}
v_{2}
v_{3}
v_{4}
v_{5}

v_{5} \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 1 \& 0 \& 1 \& 1 \& 0

0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1

0 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0\end{array}\right]\).

Isomorphism

Two simple graphs are isomorphic if:

- there is a one-to one correspondence between the vertices of the two graphs
- the adjacency relationship is preserved

DEFINITION

The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there is a one-to-one and onto function f from V_{1} to V_{2} with the property that a and b are adjacent in G_{1} iff $f(a)$ and $f(b)$ are adjacent in G_{2}, for all a and b in V_{1}. Example

Show that the graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $\mathrm{H}=(\mathrm{W}, \mathrm{F})$, displayed in Figure 8, are isomorphic.

Are G and H isomorphic? $f\left(u_{1}\right)=v_{1}, f\left(u_{2}\right)=v_{4}, f\left(u_{3}\right)=v_{3}, f\left(u_{4}\right)=v_{2}$

- 10.4 Connectivity

- Paths in Undirected Graphs

- There is a path from vertex v_{0} to vertex v_{n} if there is a sequence of edges from v_{0} to v_{n}
- This path is labeled as $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ and has a length of n.
- The path is a circuit if the path begins and ends with the same vertex.
- A path is simple if it does not contain the same edge more than once.
- A path or circuit is said to pass through the vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ or traverse the edges $e_{1}, e_{2}, \ldots, e_{\mathrm{n}}$.

Examples

$$
u_{1}, u_{2}, u_{5}, u_{4}, u_{3}
$$

Is it simple?
yes
What is the length?
4
Does it have any circuits?
no
EXAMPLE 1 In the simple graph shown in Figure $1, a, d, c, f, e$ is a simple path of length 4, because $\{a, d\}$, $\{d, c\},\{c, f\}$, and $\{f, e\}$ are all edges. However, d, e, c, a is not a path, because $\{e, c\}$ is not an edge. Note that b, c, f, e, b is a circuit of length 4 because $\{b, c\},\{c, f\},\{f, e\}$, and $\{e, b\}$ are edges, and this path begins and ends at b. The path a, b, e, d, a, b, which is of length 5 , is not simple because it contains the edge $\{a, b\}$ twice.

Lecture 8

Dr. Mohamed \mathfrak{A} bdel-Aal

Connectedness

- An undirected graph is called connected if there is a path between every pair of distinct vertices of the graph.
- There is a simple path between every pair of distinct vertices of a connected undirected graph.

Examples

Are the following graphs connected?

- A graph that is not connected is the union of two or more disjoint connected subgraphs (called the connected components of the graph).

Example

What are the connected components of the following graph?

$$
\{a, b, c\},\{d, e\},\{f, g, h\}
$$

Cut edges and vertices

- If one can remove a vertex (and all incident edges) and produce a graph with more connected components, the vertex is called a cut vertex.
- If removal of an edge creates more connected components the edge is called a cut edge or bridge.

Example

Find the cut vertices and cut edges in the following graph.

The cut vertices of G1are b, c, and e. The removal of one of these vertices (and its adjacent edges) disconnects the graph. The cut edges are $\{\mathrm{a}, \mathrm{b}\}$ and $\{c, e\}$. Removing either one of these edges disconnects G1

Connectedness in Directed Graphs

- A directed graph is strongly connected if there is a directed path between every pair of vertices $a \& b$. (from a to b) (from b to a).
- A directed graph is weakly connected if there is a path between every pair of vertices in the underlying undirected graph, (i.e when the directions are disregarded).

Example

Lecture 8

Is the following graph strongly connected? Is it weakly connected?

This graph is strongly connected. Why? Because there is a directed path between every pair of vertices.

If a directed graph is strongly connected, then it must also be weakly connected.

G

Example

Is the following graph strongly connected? Is it weakly connected?

This graph is not strongly connected. Why not? Because there is no directed path between a and b, a and e, etc. However, it is weakly connected. (Imagine this graph as an undirected graph.)

Counting Paths Between Vertices

THEOREM 2 Let G be a graph with adjacency matrix A with respect to the ordering $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices of the graph (with directed or undirected edges, with multiple edges and loops allowed). The number of different paths of length r from v_{i} to v_{j}, where r is a positive integer, equals the (i, j) th entry of \mathbf{A}^{r}.

Example

How many paths of length four are there from a to d in the simple graph G ?

$$
\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Solution:

the number of paths of length four from a to d is the $(1,4)$ th entry of A^{4}.

$$
\mathbf{A}^{4}=\left[\begin{array}{llll}
8 & 0 & 0 & 8 \\
0 & 8 & 8 & 0 \\
0 & 8 & 8 & 0 \\
8 & 0 & 0 & 8
\end{array}\right],
$$

there are exactly eight paths of length four from a to d. By inspection of the graph, we see that $a, b, a, b, d ; a, b, a, c, d ; a, b, d, b, d ; a, b, d, c, d ; a, c, a, b, d ; a, c, a, c, d ; a, c, d, b, d ;$ and a, c, d, c, d are the eightpaths from a to d.

